\square Code No. : 31012

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. (CBCS) I-Semester Main Examinations, January-2018
 Discrete Structures

Max. Marks: 60
Time: 3 hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20 \mathrm{Marks}$)

1. Let p, q, r denote the following statements about a particular triangle $A B C$.
p : Triangle $A B C$ is isosceles.
q : Triangle $A B C$ is equilateral.
r : Triangle $A B C$ is equiangular.
Translate each of the following statements into an English sentence.
a) $q \rightarrow p$
b) $\neg p \rightarrow \neg q$
c) $q \leftrightarrow r$
d) $p A \neg q$
2. Verify that $[\neg(p \rightarrow q) \rightarrow \neg q]$ is a tautology.
3. Use mathematical induction to prove that 5 divides $n^{5}-n$ whenever n is a nonnegative integer.
4. Convert the following binary number to base 10 and 16: 11001110
5. Find the coefficient of x^{4} in $(1-5 x)^{-6}$.
6. Solve the recurrence relation $a_{n+3}-3 a_{n+2}+3 a_{n+1}-a n=0$ for $n \geq 0$
7. Define the terms: Group, subgroup and semi-group.
8. What is homomorphism of two groups? Give an example.
9. Define Hamiltonian path and Hamiltonian cycle.
10. What is a spanning tree? Give an example.

Part-B ($5 \times 8=40$ Marks)

11. a) Construct a truth table for the compound statement $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
b) Draw the venn diagram for commutative law of intersection.
12. a) If n is a positive integer, prove that
$1.3+2.4+3.5+\ldots+n(n+2)=[n(n+1)(2 n+7)] / 6$
b) Give a recursive definition for the set of all nonnegative even integers.
13. From a group of 10 professors, how many ways can a committee of 5 members be formed so that at least one of the professor A and professor B will be included? Solve this by using principle of inclusion and exclusion.
14. Solve the recurrence relation $a_{n+3}-3 a_{n+2}+3 a_{n+1}-a_{n}=3+5 n$ for $n \geq 0$
15. a) Explain graph, connected graph, complete graph and regular graph with an example.
b) Find the chromatic number of the complete graph K_{4}.
16. a) Define contrapositive, converse and inverse of a open statement and explain each with an example.
b) Briefly explain about partial order relations and Hasse diagrams.
17. Answer any two of the following:
a) Find the coefficient of x^{15} in $\left(x^{2}+x^{4}+x^{6}+\cdots\right)^{4}$
b) Find the recurrence relation, with initial condition, that uniquely determines the following geometric progression: $6,-8,54,-162, \ldots$
c) Write Breadth -First search algorithm.
